L{sin(at)}) - transform of sin(at) | Laplace transform | Differential Equations | Khan Academy

L{sin(at)}) - transform of sin(at) | Laplace transform | Differential Equations | Khan Academy

Khan Academy

15 лет назад

894,143 Просмотров

Ссылки и html тэги не поддерживаются


Комментарии:

@asif7240
@asif7240 - 04.12.2023 01:59

Thank you

Ответить
@warrenmerrell9393
@warrenmerrell9393 - 28.09.2023 18:49

ngl almost had a brain aneurism when he was explaining how to remember the integration by parts equation.

Ответить
@SakoteTobiloba-wx2ie
@SakoteTobiloba-wx2ie - 15.06.2023 18:58

Thank you very much sir for this ❤

Ответить
@zvictr
@zvictr - 18.05.2023 15:47

💜

Ответить
@thegamingsurgeon4794
@thegamingsurgeon4794 - 11.04.2023 06:37

Hi Sal, thank u

Ответить
@gitoluvitinyl2748
@gitoluvitinyl2748 - 20.01.2023 10:42

Sir, just how do you make everything looks so easy?

Ответить
@tempest7074
@tempest7074 - 10.12.2022 01:55

i dont understand why are we using the product rule there

Ответить
@ahmedalgade1337
@ahmedalgade1337 - 22.06.2022 15:09

the math you used to solve is quite different from what most of the ppl learned, got confused a lot from you. but thanks got the idea anyway

Ответить
@nthabinationrocks4059
@nthabinationrocks4059 - 25.04.2022 22:00

13 years back and you’re still grooming future engineers like myself. I respect ✊

Ответить
@factoryautomation2385
@factoryautomation2385 - 26.06.2021 23:25

Thanks

Ответить
@OctodadUnderstudy
@OctodadUnderstudy - 03.04.2021 22:34

all that writing and getting lost makes me hate this. thanks for doing it so I don't have to

Ответить
@dhakshan
@dhakshan - 30.03.2021 19:15

Isn't there a formula saying something like (the following is in latex)
\int{e^{ax} sin(bx+c) dx}=\frac{e^{ax}}{a^2 + b^2}{[a sin(bx+c) - b cos(bx+c)]}+k

Ответить
@anilpreetsingh7529
@anilpreetsingh7529 - 20.03.2021 22:36

I think the whole integral would be easier if we take laplace of e^iat ( as e^iat corresponds to cosat+sinat) then after finding the laplace of e^at as (s+ai)/s^2+a^2
we get a real(s/s^2+a^2 ) and a imaginary part( a/s^2+a^2). The real part corresponds to cos(at) thus L{cosat}=s/s^2+a^2 and L{sinat}=a/s^2+a^2.
credits: Dr. Pramita Roy, my maths lecturer

Ответить
@kamrankhankami7793
@kamrankhankami7793 - 04.01.2021 22:44

evergreen videos Sir, its 2021, you did something that will be here even we all will end at the end

Ответить
@robertcowan9859
@robertcowan9859 - 16.11.2020 20:32

this is the only way im learning diff eq.

Ответить
@afifnurhary6141
@afifnurhary6141 - 15.11.2020 13:22

I love he always says he will continue the materials later when he runs out of time, unlike my lecturers :)

Ответить
@conoromalley9672
@conoromalley9672 - 05.11.2020 01:17

can yall update this, its really hard to see this video clearly

Ответить
@sudiptosaha_o1475
@sudiptosaha_o1475 - 07.09.2020 18:05

The process of by parts is quiet different in our country. Its easy to remember.

Ответить
@haligali4360
@haligali4360 - 24.07.2020 03:33

so nice video but my poor eyes. 240p

Ответить
@sshawarma
@sshawarma - 01.04.2020 05:49

Well, I will use my integration table without remorse after this one :D

Ответить
@xbox360dude0
@xbox360dude0 - 29.03.2020 22:26

Who the hell does integration by parts as ∫vdu = uv - ∫udv? It's way more common to do ∫udv = uv - ∫vdu. Obviously they're the same thing but it's just confusing to switch them.

Ответить
@michaelc.4321
@michaelc.4321 - 26.02.2020 04:59

Here’s a nice way to remember integration by parts. S(ydx) for some curve is the area between the curve and the x-axis and S(xdy) is the area between that curve and the y-axis, so if you add the areas you end up with the area of the rectangle it forms which is xy.

Ответить
@afsinbano8693
@afsinbano8693 - 05.01.2020 18:58

Please use board.

Ответить
@the_electronicTech
@the_electronicTech - 03.10.2019 07:34

this guy been helping through high school. now I'm doing n6 and im back here

Ответить
@michaelassefa1029
@michaelassefa1029 - 31.01.2019 11:58

it is very very clear persentation

Ответить
@keysangyonthan
@keysangyonthan - 15.01.2019 12:02

We can do this more simply by using. e^i(imaginary number).(theta) = Cos (theta) + i Sin (theta).
then using the concept and solve e^iat

Ответить
@liuyifan8006
@liuyifan8006 - 29.10.2018 17:53

B

Ответить
@victorserras
@victorserras - 14.07.2018 03:47

The higher up the ladder of Mathematics I climb, the bigger becomes the importance of keeping right track of everything you do, making sure you did everything in the proper order, and not making careless mistakes.

Ответить
@LudwigvanBeethoven2
@LudwigvanBeethoven2 - 01.06.2018 01:34

That was one hairy problem

Ответить
@crickendeav
@crickendeav - 30.05.2018 23:44

u integral of(v) - integral of u'- integral of v = by parts

Ответить
@hungryazhn
@hungryazhn - 27.05.2018 08:51

somebody get this guy some glucose

Ответить
@princess3284291
@princess3284291 - 06.05.2018 16:23

I believe u should be u' and vice versa.

Ответить
@amichow
@amichow - 05.04.2018 01:37

Why is U = -1/Se^-st and not e^-st

Ответить
@arammosin6923
@arammosin6923 - 15.12.2017 14:33

Thanks for that video. However, you took the long way to get the Laplace transform of the (sin) function. That can be done in only three simple steps: (1) represent (sin at) in its exponential form (sin at=1/2j [e^(jat) - e^(-jat)] , (2) substitute (1) in the Laplace general equation, and (3) solve the integrals in their exponential forms.
Thanks again.

Ответить
@bazza1024
@bazza1024 - 10.12.2017 02:18

I think your parts formula is backwards

Ответить
@bercybrainevallo2880
@bercybrainevallo2880 - 05.12.2017 06:58

I love it how Sal reminds us about the prereq calculus we need to understand the lesson. keeps me connected to the lesson.

Ответить
@shivam123qwe
@shivam123qwe - 19.11.2017 23:34

Thank you

Ответить
@jimmy87980
@jimmy87980 - 29.10.2017 22:33

Your bi parts method is foreign to me.

Ответить
@janhavipatel3371
@janhavipatel3371 - 23.10.2017 17:02

Would u plzz help me with laplace transform of sin√t

Ответить
@anjeloucautivo
@anjeloucautivo - 20.10.2017 11:22

isn't it uv-v(du) ?

Ответить
@hughmungus2551
@hughmungus2551 - 19.10.2017 13:48

I give up

Ответить
@alihumza2695
@alihumza2695 - 20.08.2017 14:51

why you take integration of U'V instead of Integration of UV' .
pls answer me sir

Ответить
@michaelempeigne3519
@michaelempeigne3519 - 28.07.2017 02:59

one can find the laplace transforms of sin(at ) and cos(at) at the same time.

L[ e^(at) ] = 1 / ( s - a )

L [ e^(i*bt )] = 1 / ( s - ib )

Recall that e^( i*theta ) = cos theta + i sin theta

L [ cos ( bt ) + i*sin ( bt ) ] = 1 / ( s - ib )

L [ cos ( bt ) ] + i * L [ sin ( bt ) ] = (s + ib ) / ( s^2 + b^2 )

L [ cos ( bt ) ] + i * L [ sin (bt ) ] = [s / ( s^2 + b^2 ] + i * [ b / ( s^2 + b^2 ) ]

so L [ cos (bt ) ] = s / ( s^2 + b^2 )
and L [ sin ( bt ) ] = b / (s^2 + b^2 )

Ответить
@ericanderson7020
@ericanderson7020 - 25.05.2017 05:00

Starting to see the purpose of this...NOT!!

Ответить
@persephone7731
@persephone7731 - 23.05.2017 19:16

You could have used the Euler's rule instead of doing integration by parts.

Ответить
@jakerust1565
@jakerust1565 - 05.12.2016 21:26

This playlist has saved my grade in Diff. eq. I just thought i would let you know that you are better at teaching than my professor. I can follow your train of thought, you don't make as many mistakes or algebra errors, and your videos are ordered in a way which parallels my course. How does one donate to Khan Academy?? I feel like I owe this page so much, I go through almost every subject that you cover. THANK YOU Sal for all of the knowledge you share with everyone! I'm sure that I am not the only one who owes their success to this channel. keep up the good work.

Ответить
@abdulrafaykhan
@abdulrafaykhan - 03.12.2016 21:24

Thank you Khan Academy, and especially Sal. You made this oh so simple 👍

Ответить
@sorajhin
@sorajhin - 16.11.2016 09:48

why not use Euler's Rule? sin(θ) = (e^(jθ) - e^(-jθ))/2j this shortens the solution. :) But thanks for the review on integration by parts.

Ответить
@thiagoliao946
@thiagoliao946 - 09.09.2016 04:28

I think it is possible to use Euler identity in order to avoid that uv substitution.

Ответить